C#: Code xếp N quân hậu (vét cạn) cho đầy đủ lời giải


Trong giải thuật này, mỗi lời giải được ký hiệu bằng một mảng solution[1..n], trong đó solution[i]= j là cột mà quân hậu ở hàng thứ iđứng. Theo tính chất số học của các ô trên bàn cờ n x n, các ô trên các đường chéo cộng chứa ô (i, j) đều có tổng chỉ số hàng với chỉ số cột bằng i+j. Tổng này nhận các giá trị từ 2 đến 2n nên ta đánh số các đường chéo này từ 1 đến 2n-1. Như vậy các ô trên đường chéo cộng thứ nhất có tổng chỉ số dòng và cột là 2, các ô trên đường chéo thứ k có tổng ấy là k+1. Ta dùng một mảng Boolean Ok_plus[1..2n-1] để kí hiệu trạng thái đã có quân hậu nào trên đường chéo cộng thứ k chưa, nghĩa là Ok_plus[k]=True nếu đã có một quân hậu đứng chiếm giữ đường chéo cộng thứ k. Tương tự, các ô trên một đường chéo trừ có hiệu như nhau. Hiệu này nhận giá trị từ 1-n đến n- 1. Đánh số từ 1 đến 2n-1 từ đường chéo có hiệu chỉ số dòng trừ chỉ số cột là 1-n đến đường chéo có hiệu ấy bằng n-1. Khi đó đường chéo trừ thứ k có hiệu chỉ số dòng trừ chỉ số cột là k-n. Ta cũng dùng mảng ok_minus[1..2n-1] để chỉ trạng thái của các đường chéo này.
Giải thuật này cố gắng đặt quân hậu ở dòng thứ i vào cột nào đó, bắt đầu từ dòng thứ nhất (luôn có thể đặt được). Nếu ở dòng thứ i ta đặt quân hậu vào cột thứ j, thì nó khống chế tất cả các ô trong cột thứ j, đường chéo cộng thứ i+j-1, đường chéo trừ thứ i-j+n. Nếu có thể đặt được quân hậu ở dòng i và i = n ta có một lời giải. Nếu đặt được và i < n ta tiếp tục cố gắng đặt quân hậu tiếp theo vào dòng thứ i+1. Nếu không đặt được, ta quay lại nhấc quân hậu ở dòng thứ i-1 và tìm phương án tiếp theo của dòng thứ i-1.

Mã giả

Procedure Try_row(i)
For j=1 To n do
If not ok_row(i) And not ok_col(j) And not ok_plus(i+j-1) And not ok_minus(i-j+n) then
{
solution(i)=j;
ok_col(j)=True;
ok_plus(i+j-1)=True;
ok_minus(i-j+n)=True;
If i<n then
try_row(i+1)
ELSE print_solution();
ok_row(i)=False;
ok_col(j)=False;
ok_plus(i+j-1)=False;
ok_minus(i-j+n)=False;
}
Thủ tục tìm tất cả các lời giải của bài toán n hậu chỉ bao gồm một lời gọi Try_row(1):
Procedure n_queen(n);
Call Try_row(1);
Video Code C#:


Bài liên quan

Bài liên quan